

FACULTAD DE CIENCIAS UDELAR fcien.edu.uy

<u>Humana R. M.⁽¹⁾, Díaz V.⁽²⁾, Teliz E.⁽³⁾, Zinola F.⁽³⁾, Ruiz F. C.^(4,5), Martínez P. S.⁽⁵⁾, Faccio R.⁽⁶⁾</u> Andreasen G.⁽⁷⁾, *Castro E. B.⁽¹⁾, Visintin A.⁽¹⁾

- ⁽¹⁾ Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, CC 16, Suc. 4, (1900), La Plata, Argentina.
- ⁽²⁾ Udelar, Facultad de Ingenieria, Instituto de Ingeniería Química, Núcleo Interdisciplinario Ingeniería Electroquímica, J. Herrera y Reisig 565, CP 11300, Montevideo, Uruguay.
- ⁽³⁾ Udelar, Facultad de Ciencias, Laboratorio de Electroquímica Experimental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400, Montevideo, Uruguay.
- ⁽⁴⁾ CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, AV. Rivadavia 1917 (C1033AAJ) Buenos Aires, Argentina
- ⁽⁵⁾ Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo
- 9500, CP 8400, S.C. de Bariloche (RN), Argentina
- ⁽⁶⁾ Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA; Centro NanoMat, Polo Tecnológico de Pando; Espacio Interdisciplinario; Facultad de Química, Universidad de la República, Montevideo, Uruguay.
- ⁽⁷⁾ Comisión de Investigaciones Científicas Bs. As. (CIC) INIFTA UNLP, CC 16, Suc. 4, (1900), La Plata, Argentina. E-mail:rhumana@inifta.unlp.edu.ar.

*En Memoria de la labor científica de la Dra. E. B. Castro y su trayectoria por el Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas.

Resumen

La composición de la aleación es un factor determinante del buen funcionamiento de los electrodos negativos para baterías alcalinas recargables de Ni – MH. El propósito de este trabajo es evaluar las propiedades electroquímicas de aleaciones del tipo AB₅, sustituyendo parcialmente el elemento Mn por 2 y 5% de Mo (p/p). Se analiza el comportamiento electroquímico en términos de un modelo fisicoquímico y el comportamiento en fase gaseosa de hidrógeno.

	Composición				
AB ₅ M0	La Ni _{3,6} Co _{0,7} Mn _{0.4} Al _{0,3}				
AB ₅ M1	La Ni _{3,6} Co _{0,7} Mn _{0,3} Mo _{0,1} Al _{0,3}				
AB ₅ M2	La Ni _{3,6} Co _{0,7} Mn _{0,15} Mo _{0,25} Al _{0,3}				

Figura 1. Difractogramas de las aleaciones

Modelo fisicoquímico

Mediante este modelo y en base a las medidas de EIS y curvas galvanostáticas de carga/descarga, se trata de identificar los parámetros cinéticos, de transporte y estructurales que gobiernan el comportamiento electroquímico de los electrodos.

El modelo tiene en cuenta la porosidad del electrodo, el proceso de carga de la doble capa, el proceso faradáico asociado a la absorción/desorción de H y el transporte de H en la partícula de aleación.

Figura 2 Imagen MEB de electrodos completamente activados.

Se realizaron medidas de absorción y desorción utilizando 2 métodos a). Isotermas dinámica ingresando o extrayendo H₂ a un flujo constante y b). Isotermas de equilibrio, ingresando en etapas, una cantidad conocida de H₂ y midiendo el valor de presión en un estado que se considera de equilibrio.

Figura 3. Equipo utilizado para las medidas de isotermas. Desarrollado por el Dr. Gabriel Meyer

Figura 4. Variación de la presión con el tiempo en fase gaseosa a 23°C

Figura 7. Espectros de impedancia experimental y teórica de los electrodos con diferente concentración de Mo.

	<i>A_i</i> x 10 ⁻⁴ (cm ⁻¹)	A _a (cm ⁻¹)	<i>i</i> ₀ x10 ³ (Acm⁻²)	$D_H x 10^{10}$ (cm ² s ⁻¹)	<i>r_a</i> x10 ⁴ (cm)
AB ₅ M0	9.5	360	1.00	3.80	10
AB ₅ M1	8.5	700	0.89	2.68	5
AB ₅ M2	5	351	1.02	2.70	9

Tabla I. Valores de los parámetros obtenidos por el ajuste

Figura 8. Comportamiento de los parámetros obtenidos vs [Mo] %p/p.

Figura 5. Isoterma de absorción a 107 °C

Figura 6. Capacidad electroquímica de descarga a 20 °C

En fase gaseosa= 6.82 x 10⁻³ moles/g a 107 °C En fase líquida= 5.87 x 10⁻³ moles/g a 20 °C

para los electrodos.

L= espesor del electrodo A_{p} = área geométrica

 κ = conductividad efectiva del electrolito

 i_0 = densidad de corriente de intercambio

 D_{H} = coeficiente de difusión de H

 C_{dl} = capacidad de la doble capa

 r_a = radio promedio de las partículas A_i = área interfacial por unidad de volumen

Conclusiones

 A_a = área activa por unidad de volumen C, B, A y V son combinaciones de los parámetros cinéticos de las etapas de reacción

M= función de transferencia de materia para una geometría esférica Γ = concentración máxima superficial del intermediario Had

La aleación con concentración intermedia de Mo (2% p/p) presenta mayor reversibilidad en el proceso de hidruración en fase líquida.

La incorporación de Mo disminuye el tiempo de activación. Observándose que para la aleación con 2% p/p de Mo presenta menor radio de partícula.

No se observan cambios significativos en la densidad de corriente de intercambio.

La cantidad de hidrógeno almacenado es mayor en fase gaseosa

Agradecimientos

Este trabajo ha sido financiado por ANII (Agencia Nacional de Investigación e Innovación), Fondo Sectorial de Energía PR 2009-05 y por la Comisión Sectorial de Investigación Científica (CSIC). E.T. ha usufructuado beca de posgrado de CSIC. V.D. y F.Z. son investigadores de PEDECIBA Química, Programa de Desarrollo de Ciencias Básicas. Se agradece el apoyo de CONICET y CNEA.