

Estudio estructural y desempeño electroquímico de cátodos preparados con LiFe_{1-x}Co_xPO₄ para baterías de ión-litio

Fernando Pignanelli¹, Dominique Mombrú¹, Mariano Romero¹, Erika Téliz², Verónica Díaz³, Fabricio Ruiz⁴, Fernando Zinola², Álvaro W. Mombrú¹, Ricardo Faccio¹.

1-Centro NanoMat, Cátedra de Física, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay. 2-Laboratorio de Electroquímica Fundamental, N.I.I.E., Facultad de Ciencias - UdelaR, Igua 4225, CP 11400, Montevideo, Uruguay. 3-Instituto de Ingeniería Química, N.I.I.E., Facultad de Ingeniería - UdelaR, J.Herrera y Reissig 565, CP 11300, Montevideo, Uruguay. 4-Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN, Argentina fpignanelli@fq.edu.uy

Introducción

Existe un creciente interés en avanzar hacia la generación de energías limpias y renovables. Este trabajo se centra en la caracterización, modelado y rendimiento electroquímico de los cátodos LiFe_{1-x}Co_xPO₄ para baterías de ion-litio, que tiene fase cristalina "olivina" o "heterosita" con grupo espacial Pnma (a = 6.00 Å, b = 10.33 Å y c = 4.69 Å). Esta serie de materiales tiene la ventaja de su bajo costo y la alta seguridad que puede ofrecer [1-2]. La nanoestructura de esta serie de materiales y su

Microscopía Electrónica y Raman confocal

Se confirmó la dimensión nanométrica de las partículas (~ 40-80 nm) de acuerdo con el tamaño medio de cristalita calculado por la ecuación de Scherrer (~ 50 nm). También se observa un recubrimiento carbonoso en las nanopartículas.

recubrumiento carbonoso es de gran importancia para mejorar el rendimiento debido a la mejora de la conducción eléctrica e iónica.

Figura 1: Esquema estructural y celda unidad de LiFe_{1-x}Co_xPO₄.

Método de síntesis

Cantidades estequiométricas de Li₂CO₃, FeC₂O₄.2H₂O, (NH₄)₂HPO₄ y CoC₂O₄ se mezclaron con ácido cítrico en agua y se agitaron hasta la formación de una solución homogénea, luego se calentó hasta la formación de un gel precursor y se calcinó a 750 °C durante 10 horas en vacío, lo que conduce a la formación de nanopartículas de la fase olivina de LiFe_{1-x}Co_xPO₄ con un recubrimiento carbonoso.

Por otra parte, mediante microscopía Raman confocal se observa a nivel microscópico la estructura y naturaleza química de los componentes. Mediante esta técnica también se evidencia la presencia de la fase olivina y una fase carbonosa.

Desempeño Electroquímico

análisis mediante voltametría FI cíclica presenta dos picos redox bien definidos. En la muestra dopada con cobalto los picos redox son más intensos indicando una mejor intercalación y des-intercalación de litio **[4]**.

Difracción de rayos X

Se verifica la formación de la fase olivina GE Pnma, y la incorporación de cobalto a estructura. Los resultados más relevantes del refinamiento Rietveld [3] para obtener los parámetros de la estructura cristalina y una estimación del contenido de Co en la fase principal. En el caso de dopado con Co se detectaron trazas (< 2%) de la fase Fe₂P.

GE: Pnma	Fase	a (Å)	b (Å)	c (Å)	X _{Co}
LiFePO ₄ (pure)	LiFePO ₄	10.336 (1)	6.010 (1)	4.694 (1)	0
LiFe _{0.99} Co _{0.01} PO ₄	LiFe _{1-x} Co _x PO ₄	10.335 (1)	6.013 (1)	4.698 (1)	0.069

Figura 2: Difractograma de rayos X y refinamientos de Rietveld de LiFe_{1-x}Co_xPO4.

Las curvas de carga y descarga muestran que ante el dopado con cobalto, el potencial de carga y descarga no varía significativamente de E = 3.5 y 3.4 V, respectivamente. De cualquier manera, se observa un aumento en la capacidad de carga y descarga para la muestra dopada con cobalto.

La capacidad de descarga muestra buena estabilidad ante los diferentes ciclados y valores mayores para la olivina dopada con cobalto, incluso a valores de densidad de corriente altos.

Nuestros resultados se encuentran en correlación con estudios previos utilizan métodos de otros que síntesis [5-7].

Conclusiones

El método de síntesis permite obtener LiFe_{1-x}Co_xPO₄ con un recubrimiento de carbono. El dopado con cobalto no conduce a modificaciones estructurales drásticas, sin embargo, nuestros resultados indican que mediante este dopado se obtiene un mejor desempeño como cátodo para baterías de ión-litio.

Figura 4:

Voltametría cíclica (arriba), curvas de carga/descarga (medio) y capacidad de descarga en función de ciclos a diferentes densidades de corriente (abajo) para LiFe₁₋ $_{x}Co_{x}PO_{4}$ con (a) X=0 y (b) 0.01

Agradecimientos

AGENCIA NACIONAL **DE INVESTIGACIÓN** E INNOVACIÓN

Referencias

[1] Padhi, A. K., et al. Journal of the Electrochemical Society 144 (1997) 1188-1194. [2] Padhi, A. K., et al. Electrochemical Society Meeting Abstracts 96 (1996) 73-74. [3] Rietveld, H.M., Journal of Applied Crystallography 2 (1969) 65-71. [4] Gao, H., et al. Electrochimica Acta 97 (2013) 143-149. [5] Song, J., et al. Solid State Ionics 253 (2013) 39–46. [6] Hu, G., et al. Physica B 446 (2014) 67–70. [7] Gao, L., et al. Solid State Ionics 305 (2017) 52–56.